Srushti Rashmi Shirish

日本 東京都 東京
3312人のフォロワー つながり: 500人以上

登録してプロフィールを閲覧

概要

A driven and proficient Machine Learning Engineer passionate about building Ethical AI…

職歴 & 学歴

  • Woven by Toyota

Srushtiさんの職歴をすべて表示

役職、在職期間などを確認できます。

または

登録またはサインインするために [続行] をクリックすることにより、LinkedInの利用規約プライバシーポリシーCookieポリシーに同意したものとみなされます。

資格

講習コース

  • Biometric Identification

    EEL6935

  • Biostatistics methods 1

    PHC6050C

  • Computational Photography

    EEl5406

  • Deep Learning

    EEL6935

  • Elements of Machine Intelligence

    EEL5840

  • Image Processing and Computer Vision

    EEL6512

  • Modern Control Theory

    EEl6614

  • Multivariate Data Analysis

    STA6707

  • State Variable Methods for Control System Analysis

    EEL5182

プロジェクト

  • Authorship Attribution (Python)

    – 現在

    • Developed an automatic learning algorithm to establish identity of a person based on the writing style.
    • Using Pandas in python, applied feature engineering to make the data ready for further analysis.
    • Worked with Bayesian Classifiers, Deep Neural Networks and RNNs to better the system.
    • Received 98% accuracy on the dataset of 1000 people with 4 writing samples each.

  • Natural Language Processing on Yelp's Dataset

    • Created a model using Scikit-Learn and NLTK to apply Natural Language Processing on customer review data on Yelp.
    • Reached 93% prediction accuracy with the help of k-fold cross-validation on the given dataset.

  • Borrower Classification with Data from LendingClub

    • Built a Random Forest Classifier to predict if a borrower would successfully repay the loans.
    • Achieved 71% accuracy with the publicly available dataset from Lending Club.

  • Classification of Iris Dataset

    • Deployed a SVM (Support Vector Machine) classifier to recognize the type of flowers in Iris dataset.
    • Evaluated performance of the classifier for various settings of the hyper-parameters.

  • Detecting Authenticity of bank notes

    • Using TensorFlow, Scikit-Learn and Contrib.Learn, developed a neural network model to detect authenticity of bank notes.
    • The image dataset of bank notes was preprocessed using Pandas and results were visualized using Seaborn in Python.

  • Biometric Fusion (MATLAB)

    • Created a biometric system based on Iris and Face in MATLAB.
    • Experimented with different levels of fusion on a dataset of 100 people to reach accuracy of 93%.
    • Used Principal Component Analysis, Linear Discriminant Analysis and Correlation based matcher, compared the performance.

  • Handwritten Digit Recognition (MATLAB)

    • Developed a MATLAB code to recognize handwritten digits in MNIST dataset.
    • Implemented K-fold validation scheme to reach accuracy of 97%.

  • Noise Removal from an Audio Clip (MATLAB)

    • Built an Adaptive Filter using NLMS algorithm in MATLAB.
    • Achieved 44.00 ERLE for the best set of hyper-parameters.

言語

  • English

    母国語またはバイリンガル

  • Hindi

    ビジネス中級

  • German

    ビジネス初級

  • Marathi

    母国語またはバイリンガル

Srushtiさんのプロフィールを表示

  • 共通の知り合いをチェックする
  • この方への紹介をリクエストする
  • Srushtiさんに直接コンタクトする
登録してプロフィールを閲覧

類似するその他のプロフィール

これらのコースで新しいスキルを追加